What can stimulated emission do for bioimaging?

نویسندگان

  • Lu Wei
  • Wei Min
چکیده

Advances in bioimaging have revolutionized our ability to study life phenomena at a microscopic scale. In particular, the stimulated emission process, a universal mechanism that competes with spontaneous emission, has emerged as a powerful driving force for advancing light microscopy. The present review summarizes and compares three related techniques that each measure a different physical quantity involved in the stimulated emission process in order to tackle various challenges in light microscopy. Stimulated emission depletion microscopy, which detects the residual fluorescence after quenching, can break the diffraction-limited resolution barrier in fluorescence microscopy. Stimulated emission microscopy is capable of imaging nonfluorescent but absorbing chromophores by detecting the intensity gain of the stimulated emission beam. Very recently, stimulated emission reduced fluorescence microscopy has been proposed, in which the reduced fluorescence due to focal stimulation is measured to extend the fundamental imaging-depth limit of two-photon microscopy. Thus, through ingenious spectroscopy design in distinct microscopy contexts, stimulated emission has opened up several new territories for bioimaging, allowing examination of biological structures that are ever smaller, darker, and deeper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stimulated emission depletion microscopy resolves individual nitrogen vacancy centers in diamond nanocrystals.

Nitrogen-vacancy (NV) color centers in nanodiamonds are highly promising for bioimaging and sensing. However, resolving individual NV centers within nanodiamond particles and the controlled addressing and readout of their spin state has remained a major challenge. Spatially stochastic super-resolution techniques cannot provide this capability in principle, whereas coordinate-controlled super-re...

متن کامل

The effect of graphite sources on preparation of Photoluminescent graphene nano-sheets for biomedical imaging

Objective(s): Graphene as two-dimensional (2D) materials have attracted wide attention in different fields such as biomedical imaging. Ultra-small graphene nano-sheets (UGNSs) have been designated as low dimensional graphene sheets with lateral dimensions less than few nanometres (≤ 500 nm) in one, two or few layers. Several studies have proven that the process of acidic exfoliation and oxidati...

متن کامل

Two-photon absorption and time-resolved stimulated emission depletion spectroscopy of a new fluorenyl derivative.

The synthesis, comprehensive linear photophysical characterization, two-photon absorption (2PA), steady-state and time-resolved stimulated emission depletion properties of a new fluorene derivative, (E)-1-(2-(di-p-tolylamino)-9,9-diethyl-9H-fluoren-7-yl)-3-(thiophen-2-yl)prop-2-en-1-one (1), are reported. The primary linear spectral properties, including excitation anisotropy, fluorescence life...

متن کامل

Nanoparticle-Assisted STED Nanoscopy with Gold Nanospheres

We demonstrate stimulated emission depletion (STED) microscopy with 20 nm gold nanospheres coated by fluorescently doped silica. We demonstrate significantly improved spatial resolution down to 75 nm, which is the first time that hybrid NPs are used in STED imaging beyond the diffraction limit of confocal microscopy. Unlike previous demonstrations of super-resolution with metal nanoparticles wi...

متن کامل

Biocompatible and Photostable AIE Dots with Red Emission for In Vivo Two-Photon Bioimaging

Bioimaging systems with cytocompatibility, photostability, red fluorescence, and optical nonlinearity are in great demand. Herein we report such a bioimaging system. Integration of tetraphenylethene (T), triphenylamine (T), and fumaronitrile (F) units yielded adduct TTF with aggregation-induced emission (AIE). Nanodots of the AIE fluorogen with efficient red emission were fabricated by encapsul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of the New York Academy of Sciences

دوره 1293  شماره 

صفحات  -

تاریخ انتشار 2013